Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1004820130140020071
Journal of Biomedical Research
2013 Volume.14 No. 2 p.71 ~ p.76
Functional expression of mechanosensitive two-pore domain potassium channel in human bladder carcinoma cells
Park Kyung-Sun

Kim Yang-Mi
Abstract
Bladder cancer is a common cancer in smoking men and may correlate with mechanosensitive potassium channels because the urinary bladder is a stretch sensing organ. Two-pore K+ channels (K2P), such as TASK3 and TREK1, have recently been shown to play a critical role in both cell apoptosis and tumorigenesis. Of the channels, TREK1 can be activated by many physiological stimuli, including polyunsaturated fatty acids, and intracellular pH, hypoxia, and neurotransmitters. Here we attempted to determine whether TREK1 is functionally expressed in bladder cancer 253J cells. K2P channels, including TREK1, TREK2, TASK1, TASK3, and TWIK1, were quantified in cultured human bladder cancer 253J cells using real time quantitative RT-PCR (qRT-PCR) analysis. Among them, TREK1-like channel was recorded at a single channel level using the patch-clamp technique. The TREKl-like channel, with single-channel conductance of ~90 pS at ?80 mV, was recorded in symmetrical 150 mM KCl using an excised inside-out patch configuration. The current-voltage relationships were linear and were insensitive to tetraethylammonium. The channel was activated by membrane stretch, free fatty acids, and intracellular acidosis. These results with electrophysiological properties resemble to those of K2P channel, for instance, TREK1. Therefore, we conclude that TREK1 channel is functionally present in bladder cancer 253J cells.
KEYWORD
two-pore K+ channel, TREK1, bladder cancer 253J cell, patch clamp, single channel recording
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)